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A New Algorithm for Factoring Polynomials 
Over Finite Fields* 

By David G. Cantor and Hans Zassenhaus 

Abstact. We present a new probabilistic algorithm for factoring polynomials over finite 
fields. 

1. Introduction. Suppose F is a finite field of characteristic p with q = pd 

elements. A fundamental computational task is to find the irreducible factors of a 
monic polynomial 

n 

(1) f~~~~~~(t) = fiti, fn = 1, 
i=O 

in F[t]. There are two standard methods; one is due to E. Berlekamp, the other 
appears to be a "folk method". Both are described by D. Knuth in [3, pp. 381-397]. 
Further improvements, for special values of q, are given by R. Moenck in [5J. See 
also E. Berlekamp [1]. (Note that both methods as described in the references apply 
only when d = 1, however, straightforward modifications, described below, allow 
d > 1.) Both methods use the calculation of resultants (or equivalently the solution 
of linear equations) to reduce the problem to finding the roots of a polynomial 
which has all of its roots in F. When p is very small, probabilistic methods are used. 
An improvement to the "folk method" method, along with a more explicit calcula- 
tion of the work required, has recently been given by M. Rabin [6]. 

We present here a new probabilistic method which, when combined with the 
above algorithms, avoids the need for both resultants and linear equations. It leads 
to algorithms which are conceptually simpler than previous methods. Moreover, it 
works equally well for all finite fields F, regardless of the magnitude of q. When 
used for factoring a quadratic x2 - a, it reduces to Berlekamp's algorithm. Other 
standard algorithms for factoring quadratics are due to D. H. Lehmer [4] and D. 
Shanks [7]. Our algorithm is also suitable for finding solutions of polynomial 
equations over finite fields. 

2. Preliminaries. The first part of our method is a slight variant of the first part of 
the "folk method" mentioned above. The variant allows d > 1. Initially, we remove 
the multiple factors fromf. If the formal derivative f'(t) is 0, then f(t) has the form 

n/p 

f(t) = E fitip = g(t-, 
i=O 
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with 

n/p 

g(t)= 2 fql/Pti, 
i=O 

and it is enough to factor g(t). If f'(t) is not zero, then we may compute 
h(t) = gcd(f(t),f'(t)), and replace f(t) by f(t)/h(t). We repeatedly perform the 
above two operations until gcd(f(t), f'(t)) = 1. In this way, we obtain a polynomial 
with the same irreducible factors as the original polynomial, but with each factor 
occurring only once. Next, we reduce the factorization problem to the case when 
ali irreducible factors of f have the same degree. To do this, we define f1(t) = f(t) 
and inductively for j = 1, 2, 3, . . . define uj(t) = gcd(fj(t), t - t) and fj+ 1(t) = 

fj(t)/ u(t). The iteration stops when f1+ 1(t) is constant. It is easy to see (and well 
known) that uj(t) is the product of all the irreducible factors, of degreej, of f(t). 

In [1], E. Berlekamp concluded that the above reductions may run more slowly 
than other methods based on matrix reduction. In [2], J. Calmet and R. Loos give 
computer timing for this type of phenomenon. 

3. Separating Factors of Equal Degree: The New Method. In the first part of this 
section, we assume that f(t) has degree n and is a product of r distinct irreducible 
factors ui(t), 1 < i < r, with deg(ui) = si, 1'. I si = n. Consider the ring R = 

F[t]/(f(t)). Since the ui(t) are pairwise relatively prime, there exist polynomials 
ei(t), 1 < i < r, of degree < n, satisfying 

(2) ei(t) { 1 (mod uj(t)),j i. 

It is clear that 

(3) ej(t)ej(t) e( (t) (mod f(t)) if i =1j 
~Ljw~Lj = 0 (mod f(t)) if i 46j. 

Furthermore, Y= I e(t) -1 (mod f(t)), and, since each e,(t) has degree < n, we see 
that Y= I e(t) = 1. We thus have the direct sum composition 

(4) R = E Rei(t) 

(here and throughout, we shall denote an element of R by a polynomial in its coset; 
thus e*(t) denotes the coset e*(t) + f(t)F[t]). The summand Rei(t), in (2), is a field 
of qS, elements and there is a natural isomorphism of the field F[t]/(u,(t)) onto 
Rei(t) which sends the polynomial g(t) to g(t)e,(t) (more precisely it sends the 
residue class g(t) + ui(t)F[t] to the residue class g(t)e*(t) + f(t)F[t], but, as stated 
above, we shall slur over this technicality in what follows). 

The decomposition (4) is, of course, the classical Wedderburn decomposition of 
the semisimple, commutative ring R. 

For the remainder of this section, we assume all si are equal, say, to s. Assume 
first that q is odd and suppose we have found 

r 

(5) a(t) = 2 aiei(t) E R, 
i=l 

where each a, = 0, + 1, and further suppose that a(t) Z 0, + 1 (mod f(t)). Put 
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S = {i: a, = 0) and T = {i: a, = 1). Then, if Tis not empty, we see that 

gcd(f(t), a(t) - 1) = n ui(t) 
i Gi T 

is a proper factor of f(t), while, if T is empty, 

gcd(f(t), a(t)) = II ui(t) 
iES 

is a proper factor of f(t). 
Thus, such a(t) lead to a factorization of f(t). To find such a(t), we proceed at 

random. Specifically, we choose a random polynomial b(t) from the qn - q 
nonconstant polynomials of degree < n in F[t], giving each such polynomial the 
probability 1 /(qf - q). We can write 

r 

b(t)_ bi(t)e(t) (modf(t)) 

Put m = (qS - 1)/2. Then 
r 

b(t)m bi(t)mei(t) (mod f(t)). 
i=lI 

The calculation of each bi(t)m may be performed (mod u,(t)) and thus b,(t)m 0, 1, 
or -1 (mod u,(t)). Unless b(t)m- 0, T 1 (mod f(t)), we may put a(t) b(t)m 
(mod f(t)) and obtain a factorization of f(t). 

We now calculate the probability that b(t)m 0 O, T 1 (mod f(t)). Since we chose 
b(t) nonconstant, a fortiori nonzero, b(t)m i 0 (mod f(t)). For each i, there exist m 
polynomials bi(t), of degree < s, such that bi(t)s _ 1 (mod u,(t)) and m such that 
bi(t)s -1 (mod ui(t)). Hence, there exist 2mr polynomials b(t) of degree < n 
satisfying b(t) =- 1 (mod f(t)), and q - 1 of these will be constant. Therefore, the 
probability of randomly choosing b(t) satisfying b(t)m =T 1 (mod f(t)) is 

2mr - q + 1 
< 1/2. 

qfn - q 

So, the probability of success at each trial is > 1 - 21 -r > 1/2. 
We now consider the case p = 2. If q -1 (3), then F contains a primitive 3rd 

root of unity p satisfying p2 + p + 1 = 0 (and we assume p is known). Put 
m = (qS - 1)/3. Then, choosing b(t) as before, define 

r 

a(t) =_ b(t)m - aie*(t) (mod f(t)), 
i=lI 

where the ai E GF(4) = {O, 1, p, p2). Thus, if a(t) a GF(4) (mod f(t)), then at least 
one of gcd(f(t), a(t) + 1), gcd(f(t), a(t) + p), gcd(f(t), a(t)) will be a nontrivial 
factor of f(t). We now calculate the probability that a(t) E GF(4). Suppose 
b(t) -- ,r _ biei(t) (modf(t)). For j = 0, 1, 2, there exist m choices for each bi 
satisfying bim = pi (mod u,(t)). Hence, the probability that a(t) E GF(4) is 

3Mr - q + 1 -r 1/3. 
qfn - q 

If q _ 2 (3), we simply factor f(t) in the quadratic extension field F(p) of F and 
then combine factors which are conjugate over F. 
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4. Applications to Berlekamp's Methods. We now show how our probabilistic 
method can be applied to Berlekamp's algorithm, replacing the calculation of 
resultants and allowing explicit computation of the probability of success. In 
Berlekamp's algorithm, it is assumed that f(x) = 1Ii.=1f(x) where the fi(x) are 
distinct irreducible polynomials of (not necessarily equal) degree si. Thus, only the 
first, not the second, reduction at the beginning of Section 2 need be applied. Next 
a basis vi(x), 1 < i < r, of the r-dimensional F-vector space V, consisting of the 
solutions a(x) (modf(x)) to the congruence a(x)q =_ a(x) (mod f(x)), is obtained. 
We can write any a(x) E V in the form 

r 

(6) a(x) = a(x)e(x), 
i-l 

where the e*(x) are the polynomials described at the beginning of Section 3 
satisfying (2), (3), (4). Then, a(x)q- r= 2 a,(x)qe,(x), hence, ai(x)q =_ a, (x) 
(mod f(x)), and so ai = ai(x) E F. We see that V consists of the qr polynomials of 
the form X_Ie aiei(x), where the ai E F. We now choose for a(x) a random, 
nonzero element of V. This is done by choosing a nonzero r-tuple (bl, b2,... , br) 
E F' from the qr - 1, such r-tuples giving each probability I/(qr - 1), and 
defining a(x) I l bivi(x). Conversely, given a(x) E V, we can write a(x) = 

xi 1 ai,e(x), and all qr - 1 r-tuples (a1,a2,... , ar) are equally likely. 
First consider the case q odd. We form a(x)m = ri. 1 amem, where m = 

(q - 1)/2. The aim are 0 or + 1. Unless all aim are equal, either gcd(f(x), a(x)m - 1) 
or gcd(f(x), a(x)m + 1) will be a nontrivial factor of f(x). The number of 
nonzero r-tuples (al, a2, ... l, ar) with all am equal is 2mr. Thus, the probability of 
a nontrivial factorization is at least 

1 - 2mr/ (qr - 1) > 1 - 21 r > 1/2. 

After producing such a factorization, f(x) = g,(x)g2(x), one may proceed in two 
ways. 

The first is to apply the above method to g, and g2, separately, and proceed 
recursively. 

The second is to suppose inductively that we have found t < r factors 
g1(x), g2(x), . .. , gt(x) such that n g,(x) = f(x). Then we choose a new random 

a(x), as before, and form gcd(gi(x), a(x)m + 1), 1 < i < t. This is done most easily 
by first forming gcd(f(x), a(x) + 1) and then taking the gcd of these two poly- 
nomials with each of the gi(x), one-by-one. This will fail to yield a nontrivial 
factorization of at least one gi(x) if and only if, in the expression a(x)m = 

ajej(x), all the ajm, corresponding to those ej(x) which divide a given gi(x), are 

equal. If gi(x) has r, factors (where r,1 = r), then the probability of a failure is 
less than 

(i II(1 + 2mri))/ (qr - 1) < (1/2) r, 

and so the probability that at least one nontrivial factorization occurs is > 1/2. 
When q is even, one first considers, as in Section 3, the case when F j GF(4) = 

(o0 p, p2, 11, where p is a primitive cube root of 1. Suppose that f(x) has already 
been factored into t < r factors f(x) = Ii_. gi(x). In this case, we compute 
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gcd(g,(x), b(x) - p), m = (q - 1)/3, 1 S i S t, j = 0, 1, 2. Denote by r, the 
number of irreducible factors of gi. The probability that no nontrivial factorization 
of at least one g,(x) occurs is less than 

(jI[11( + 3mri))/ (qr - 1) < (1/3)rt. 

Finally, if p 4 F, one carries out the factorization in the quadratic extension field 
F(p) and at the end combines conjugate factors. 

5. Some Modifications. For fields where q - 1 has small factors, various modifi- 
cations of the above procedure are possible. Suppose h > 1 is a divisor of q - 1 

and (h, q) = 1. Then there exists a primitive hth root of unity ( in F. Such a t can 
be found explicitly. (For example, factor xh - 1 using the first of the above 
procedures, since xh - 1 has distinct linear factors. Alternatively, choose a random 
nonzero element 9 of F and compute 9m, m = (q - 1)/h. With probability 
4(h)/h, Am will be a primitive hth root of 1.) Now suppose, as in Section 4, that 
f(x) has r factors and we have already obtained the factorization f(x) = Ht g,(x) 
where each g,(x) has ri factors with It= I ri = r. We choose a(x), a random nonzero 
element, of V and form the polynomials gcd(gi(x), a(x)m - (i), 1 < i < t, 0 < j 
h - 1. The probability that no nontrivial factorization of at least one g,(x) occurs is 

(I + I + hmri))/ (qr - 1) < (P I1 + hmr))/qr 

t t 

= (ri (1 + hmri) /qr = I ((h'ri + (q - )ri)/ (qrihrl)) 

< II (qr/ (qih'')) =rr 
i=l1 

since q'r - (q - I)ri > ri(q - I)r' > hri-1. Thus, the probability of a nontrivial 
factorization has been increased, at the cost of computing a greater number of 
gcd's. 

Note that if h is a small divisor of qd _ 1, we can apply similar modifications to 
the methods of Section 3. 

When q = pd, d > 1, there is a useful modification of Berlekamp's method. 
Suppose first that q is odd. Consider the solutions a(x) (modf(x)) to the con- 
gruence a(x)P a(x) (mod f(x)). Writing such a solution in the form (6), we see 
that each ai(x) satisfies a,(x)P =ai(x) mod fi(x), hence a, = ai(x) E GF(p), the 
finite field of p elements contained in F. Thus, the solutions a(x) form a vector 
space U over GF(p), and a basis for the a(x) may be found by computing 

gj(x) = xip mod(f(x)) for 0 < i < n. The coefficients of gi(x) may be expressed as 
linear combinations of elements of a fixed basis of F over GF(p). This will lead to 
a system of nd equations in nd unknowns over GF(p). The probabilistic method 
may then be applied to random elements a(x) of U, which should be raised to the 
(p - 1)/2 power. If q = 2d is even, we suppose as before that F D GF(4) and, 
equivalently, that d is even. The above method may then be applied with GF(4) 
replacing GF(p), and in this case the ai will be 0, 1, p, p2 and exponentiation will 
not be necessary. 
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6. Remarks. We first note that the effective cost of algorithms of this nature is 
extremely hard to estimate, for there are numerous methods of implementation, 
and the best implementation depends upon the magnitude of the degree n of f, and 
upon q. The asymptotically best algorithms frequently turn out to be worst on all 
problems for which they are used. For the problem at hand, the largest amount of 
work is probably that of calculating high powers of polynomials; e.g. b(x)q' 
(modf(x)) may have to be calculated, perhaps, for several b(x). If xiq (modf(x)), 
0 < i < n, is tabulated, then b(x)"+' may be obtained from b(x)"' by one matrix- 
by-vector multiplication. This yields, using classical techniques, an algorithm whose 
expected running time is O(n3 + n2 log q). Modern, asymptotically good algo- 
rithms may be better asymptotically, but not useful in this context. 

Note that most of the procedures described by R. Moenck [5J, for special choices 
of q, apply also to this algorithm. 

It is interesting to compare our algorithm with Berlekamp's in the case when f(x) 
has only linear factors. In this case, Berlekamp's method calls for calculating 
gcd(f(x), (x - C)(q- 1)/2) for random c E F. Our method differs only in that we 
compute gcd(f(x), b(x)(q-1)/2) for random, nonconstant b(x) E F[xJ. Indeed, as 
noted earlier, when f(x) is a quadratic polynomial, the methods are (essentially) 
identical. However, the apparently minor change, which allows a general b(x) 
instead of (x - c), is the key to our new method. For (1) it allows precise 
probability calculations to be made; (2) it generalizes to the separation of higher- 
degree factors. 
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